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Online 4-Dimensional Reconstruction of Time-Slices
in the CBM Experiment

Valentina Akishina and Ivan Kisel

Abstract—Themain focus of the CBMexperiment (FAIR,Darm-
stadt, Germany) is the measurement of very rare probes, which re-
quire interaction rates of up to 10 MHz. It makes it mandatory to
perform the full online event reconstruction at the first level trigger
and to operate with huge data rates of up to 1 TB/s. CBMwill have
a continuous beam without bunch structure, that means collisions
may overlap in time, making the traditional event-based approach
not applicable. It requires full online event reconstruction and se-
lection to be done in 4D, including time. The standalone First Level
Event Selection (FLES) package has been created for the CBM ex-
periment. It contains all reconstruction stages: track finding, track
fitting, short-lived particles finding and event selection. For track
reconstruction the Cellular Automaton (CA) method is used, that
allows to resolve tracks from a time-slice in event-corresponding
groups. The algorithm is intrinsically local and the implementa-
tion is both vectorized within a core and parallelized between CPU
cores. The CA track finder shows a strong scalability on many-core
systems. The speed-up factor of 10.6 was achieved on a CPU with
10 physical cores using hyper-threading.

Index Terms—Data processing, elementary particles, high per-
formance computing, pattern recognition.

I. INTRODUCTION

T HE CBM (Compressed Baryonic Matter) experiment [1]
at the upcoming FAIR accelerator (GSI, Darmstadt, Ger-

many) aims to explore the phase diagram of strongly interacting
matter at the highest net baryon densities by investigating nu-
clear collisions from 2 to 45 GeV energy per-nucleon ( GeV).
One of the most promising observables carrying information on
the early stage of a collision are rare probes measurements (e.g.
charmonium), which require unprecedented statistics for this
energy range and, thus, collision rates up to 10 MHz. Taking
into account the multiplicity of charged particles in a heavy-ion
collision (up to 1000, see Fig. 1), one should expect data flow
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Fig. 1. Tracks in a central Au-Au event at GeV collision energy in the
CBM experiment. On average there are about 1000 tracks of charged particles.

rate of 1 TB/s. Such a huge data rate makes it mandatory to se-
lect interesting events online with a reduction factor of about
three orders of magnitude in order to meet the data recording
rate of 1 GB/s.
Moreover, CBM will operate on a continuous beam without

bunch structure. As a result, collisions may overlap in time,
making the traditional event-based approach not applicable.
That requires full online event reconstruction and selection not
only in space, but also in time, so-called 4D event reconstruc-
tion and selection.
The event building and filtering is implemented using the

First Level Event Selection (FLES) package [2] running on-
line on a dedicated multiprocessor computer farm. That requires
the package to be fast, precise and suitable for online data pro-
cessing in order to use the full potential of many-core computer
architectures.
The FLES software is being developed as a platform and

operating system independent package, which includes several
modules of the reconstruction chain: track finding, track fit-
ting, short-lived particles finding and event selection. The input
data is distributed within the FLES farm in a form of so-called
time-slices, whose time length is proportional to the computing
power of a processing node.
The Cellular Automaton (CA) track finder [3] is used to

reconstruct tracks of charged particles inside a time-slice.
The reconstruction of each time-slice is performed in parallel
between cores within a CPU, thus minimizing communication
between CPUs. After all tracks of the whole time-slice are
found and fitted in space and time (4D), they are collected into
clusters of tracks originated from common primary vertices,
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which then are fitted, thus identifying 4D interaction points
registered within the time-slice. Secondary tracks are associated
with primary vertices according to their estimated production
time. After that short-lived particles are found. The last stage
of the FLES package is selection of events according to the
requested trigger signatures.
The paper describes the track finding stage of the event re-

construction, namely the reconstruction of time-slices at high
interaction rates up to 10 MHz.

II. CELLULAR AUTOMATON TRACK FINDER

The general problem of finding tracks of charged particles out
of dense and contaminated with noise detector measurements
is a non-trivial task, which is often considered to be the most
challenging and time-consuming phase of the event reconstruc-
tion. One of the reasons for that is a huge amount of combinato-
rial combinations, that grows with increased track density and
has to be considered by a track finder in order to combine one-
or two-dimensional measurements into five-dimensional tracks.
Unfortunately, the exponential growth of the combinatorial enu-
meration at high track densities usually makes it impossible to
consider all combinations within a reasonable time. However, a
solid solution for the combinatorial optimization is provided by
the CA track finder algorithm [3]–[7].
The CAmethod (Fig. 2), being a local one, suppresses combi-

natorial enumeration [8] by building short segments at the first
stage before starting the main combinatorial search (step 1 in
Fig. 2). These track segments, so-called cells, have a higher di-
mensionality, than measurements have. After this stage is fin-
ished the CA track finder never goes back to processing hits
information again, working only with created track segments
instead. Taking into account a track model, the method searches
for neighboring cells, which share a hit in common and have the
same direction within some error, and, thus, potentially belong
to the same track. During this neighbors search the track finder
also estimates a possible position of a segment in a track (step 2).
Beginning with the first station the track finder goes to the last
station moving from one neighbor to the next one assigning to
each segment a counter, which stores number of neighbors to the
left. Starting with the segment of the largest position counter the
track finder follows a chains of neighbors collecting segments
into a track candidate (step 3). As a result one gets a tree struc-
ture of track candidates. In the last stage (step 4) the competi-
tion between the track candidates takes place: only the longest
tracks with the best -value sharing no hits in common with
better candidates are to survive.
As one can conclude from the CA track finder strategy the

major part of the algorithm is intrinsically local, since working
only with data within a small neighborhood region at each par-
ticular moment. In addition to that, the algorithm transforms
the tracking information step-by-step to a higher consolidation
extent: moving from hits to segments, from segments to can-
didates, from candidates to tracks. Thus, the information pro-
cessed and analyzed once by the track finder is stored in a new
form for the next stage with no need to read it again later. This
optimizes memory access, since no data is read or processed
twice.

Fig. 2. Simplified scheme of the Cellular Automaton track finding algorithm.
Tracking stations are shown by dashed lines. Hits, which correspond to two
different particles, are shown as blue and green circles, noise hit is shown as
white circle. Track segments are depicted by lines, color of a line corresponds
to its position on a track.

The algorithm features, mentioned above, make it suitable for
a parallel implementation in order to be able to fully utilize the
power of many-core computer architectures.

III. TRACK FINDING AT HIGH TRACK MULTIPLICITIES

Since the CBM experiment will operate at extremely high in-
teraction rates, different collisions may overlap in time, leaving
no possibility to separate them in a trivial way. Thus, the need to
analyze so-called time-slices, which contain information from a
number of collisions, rather than isolated events arises. The need
to work with time-slices instead of events is triggered not only
by the physical circumstances, but also is encouraged by com-
puting hardware reasons. Not only minimum bias events, but
even central events were proved to be not big enough in order to
be processed in parallel on many-core computer architectures.
For implementing in-event level parallelism these events do not
have enough sources of parallelism (like hits, segments, track
candidates for different reconstruction stages) in order to be re-
constructed on 10 or more CPU cores simultaneously.
As a first step on a way towards the time-slice reconstruction

we introduce a group of packed minimum bias events with no
time information taken into account. To create such a group we
combine space coordinates of hits from a number (from 1 up to
100) Au-Au minimum bias events at 25 GeV ignoring such
information as event number or time measurements (Fig. 3).
One can notice that with such an approach we create hits on
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Fig. 3. Reconstructed tracks in a minimum bias event (left) and in a packed
group of 100 minimum bias events (right), 109 and 10 340 tracks on average
respectively.

the minimum bias event level, so we produce fake combinato-
rial space points in double-sided strip detectors within original
events only, not within the whole group.
The groups were treated by the CA track finder as regular

events and the reconstruction procedure was performed with no
changes. Varying the number of minimum bias events in a group
we have studied the track reconstruction efficiency dependence
with respect to the track multiplicity. Here we define the effi-
ciency as a ratio of reconstructed and reconstructable tracks. A
track is considered as reconstructable, if it has at least 4 or more
consecutive Monte-Carlo points. By definition, a reconstructed
track is assigned to a generated particle, if at least 70% of its
hits have been produced by this particle. A generated particle is
regarded as found, if it has been assigned to at least one recon-
structed track. A reconstructed track is called ghost, if it is not
assigned to any generated particle according to the 70% crite-
rion.
As one can see in Fig. 4 high momentum primary tracks

(RefPrim), that have a particular physical importance, are re-
constructed with an excellent efficiency of about 96%, which
varies within less than 2% up to hundred events in a group.
If we include secondary tracks (RefSet) the efficiency is a bit
lower—93.7%, since some secondary tracks originate far from
the target. This value varies within 3% for the extreme case of
100 minimum bias events grouped. The efficiency for low mo-
mentum tracks is 79.8% (ExtraPrim) due to the multiple scat-
tering in the detector material. It changes within a 6% window
in the case of the largest track multiplicities. The ghost fraction
remains at acceptable level (less than 10%) up to the highest
track multiplicities. Thus, the CA track finder is proved to be
stable with respect to the high track multiplicities.
However, not only the efficiency, but also the speed of the

reconstruction algorithm is crucial for successful performance
of the CBM experiment. We have studied the processing time,
that the CA track finder needs to reconstruct a grouped event as
a function of the number of Monte-Carlo tracks in a group (Fig.
5). The results show that the dependence is perfectly described
with a second order polynomial. This is a promising result, if
one keeps in mind the exponential growth of combinatorics with
increasing track multiplicity. This dependence can be improved
further and turn into a linear one, which corresponds to the case
of event-based analysis, after introducing time measurements
into the reconstruction algorithm.

Fig. 4. Track reconstruction efficiencies and ghost rate for different sets of
tracks versus track multiplicity.

Fig. 5. The CA track finder time needed to reconstruct groups of minimum
bias events without time information with respect to the track multiplicity. The
dependence is fitted with a second order polynomial.

IV. IN-EVENT PARALLELISM FOR THE CA TRACK FINDER
The vectorized, but sequential in terms of cores usage, ver-

sion of the CA track finder [2] was taken as a starting point for
the development of a parallel version using the OpenMulti-Pro-
cessing (OpenMP) technique [9]. OpenMP is an API, which
supports multi-platform shared-memory parallel programming.
It provides an interface for implementing parallelisation be-
tween cores in a user application. The user prompts OpenMP,
which section of the code should be run in parallel, marking the
section with a preprocessor directive, defines number of threads
(independent streams of instructions) before the section is exe-
cuted and the computations are divided between the threads. By
default the threads are allocated to processors by the runtime
environment, which takes into account different factors, like
the processor usage or the machine load. In order to prevent a
CPU from sending a thread to other cores during runtime, and,
thus, affecting the parallelisation efficiency, we use the POSIX
library [10] to set a permanent thread to core affinity. In order
to prevent non-optimal usage of NUMA architecture memory,
like processing data allocated on a certain CPU by another
CPU, a function mlockall was used. This function allows the
user to prevent the data migration in the memory by causing
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all of the pages mapped by the address space of a process to be
memory resident until unlocked or until the process exits [10].
The goal was to make a parallel implementation of the CA

algorithm keeping the same efficiencies and having the stable
track reconstruction result regardless of a number of executing
threads. However, certain parts of the code, being essentially
sequential, had to be significantly rewritten in order to introduce
parallelism.
Parallel implementation requires certain features from an al-

gorithm. First of all, in order to get correct results, parallel it-
erations should not have loop dependencies. That means that
the result of one parallel iteration should be independent from
other parallel iterations, running at the same time. Second, one
has to keep in mind that a parallel section should always be
thread-safe, so that shared data structures are used in a manner
that guarantees safe simultaneous execution by multiple threads
at the same time. This can be achieved by allocating local data
structures for each thread and summing up results of their work
afterwards or introducing some level of synchronization into
the threads execution. Synchronization usually slows down the
speed of a program, since threads have to wait for each other or
exchange results of their work, so we tried to minimize usage of
this mechanism. Also memory optimization and the data struc-
tures scheme become essential in the case of parallel program-
ming: it is often crucial for the speed that one uses the fastest
memory only. So certain work with data structures optimiza-
tion in order to fit the memory size is necessary.
An important issue while making a parallel implementation is

to keep in mind a certain computer architecture. The optimiza-
tion and testing of the parallel CA track finder was performed on
a server with 4 Intel Xeon E7-4860 processors. Each processor
has 10 physical cores with hyper-threading. It is an example of
so-called NUMA (Non-Uniform Memory Access) architecture,
that means that the memory access time for the server depends
on a memory location relative to the processor. CPUs can com-
municate and exchange data between each other, but it takes
longer time. Thus, the decision was taken in order to avoid pro-
cessors communication to send one time-slice to a single CPU
for reconstruction, not to the whole node. This way such an ar-
chitecture can be filled with 4 time-slices reconstructed in par-
allel.
As it was mentioned in the introduction, the algorithm con-

sists of several logical parts (see Table I). First, a short (2% of
the total execution time) initialization, when we prepare hit in-
formation for tracking, takes place. The main and the most time
consuming part of triplet construction takes about 90% of the se-
quential execution time. Out of triplets we construct tracks, that
takes about 4%, and in addition during 3.4% of the reconstruc-
tion time we prepare information for the next iteration. All steps
of the algorithmwere parallelized using different sources of par-
allelism in each step: hits in the initialization and final stages,
triplets for the major part, track candidates for the track con-
struction step. In order to have enough sources of parallelism to
fill a whole CPU, a group of 100 minimum bias events was pro-
cessed. The resulting speed-up factors for different steps as well
as for the full algorithmwithin one CPU (20 hyper-threaded log-
ical cores) are presented in Fig. 6.

TABLE I
FRACTION OF THE TOTAL EXECUTION TIME FOR DIFFERENT STEPS OF THE CA

TRACK FINDER ALGORITHM IN A SEQUENTIAL RUN

Fig. 6. Speed-up factor due to parallelisation for different steps and the full al-
gorithm on Intel Xeon E7-4860 CPUwith 10 physical cores and hyper-threading
for the case of 100 minimum bias events grouped.

Some steps have a better speed-up for a higher number of
cores due to less thread synchronization needed. The algorithm
shows a linear scalability. In addition to a speed-up factor of
10, which reflects the total number of physical cores, one ex-
pects an extra 25%–30% increase of the speed of the algorithm
due to hyper-threading, that theoretically gives a speed-up factor
of about 13 on such a CPU. The achieved speed-up factor is
10.6 for the full CA track finder reconstruction algorithm on the
Intel Xeon E7-4860 CPU with 10 physical cores with hyper-
threading.

V. RECONSTRUCTION OF TIME-SLICES
After the CA track finder proved to be fast and stable with

respect to the track multiplicity, the next step towards the time-
slice based reconstruction is an implementation of time mea-
surements.
In order to introduce time measurements into the reconstruc-

tion procedure the event start time was assigned to each min-
imum bias event in a 100 events group during the simulation
phase. The start time was obtained with the Poisson distribu-
tion, assuming the interaction rate of Hz. A time stamp we
assign to a certain hit consists of the event start time plus a time
shift due to the time of flight from a collision point to a detector
station. This time of flight differs for each hit. In order to ob-
tain a time measurement for a hit we then smear a time stamp
according to a Gaussian distribution with a sigma value of the
detector resolution of 5 ns.
After introducing time measurements we can use the time in-

formation in the CA track finder. Here we do not allow to build
triplets out of hits, which time difference is greater than of
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Fig. 7. Part of a time-slice with 100 minimum bias events. The upper picture:
with blue color the distribution of hit time measurements in the time-slice is
shown. The picture below: with light blue color the initial distribution of hit
measurements is shown (same as in the upper picture), black color shows time
measurements of the reconstructed tracks.

the detector time resolution. It is a justified assumption, since
the time of flight between the detector planes is negligible in
comparison to the detection precision. Apart from that, we per-
form the reconstruction procedure in the regular way described
above. After the reconstruction we assign to each track a time
measurement, which is calculated as an average of the hit time
measurements.
The initial distribution of hits measurements representing the

complexity of defining event borders in a time-slice at the in-
teraction rate of Hz is shown in the upper part of Fig. 7
with blue color. The resulting distribution of reconstructed track
measurements (black color), as well as the distribution of ini-
tial hit measurements (light blue color) one can see in the lower
part of Fig. 7. The reconstructed tracks clearly represent groups,
corresponding to events, which they originate from. Even in the
area of the most severe overlap (Fig. 8) the time-based CA track
finder allows to resolve tracks from different events in time.

VI. CONCLUSION

The standalone FLES package for the CBM experiment con-
tains all reconstruction stages: track finding, track fitting, short-
lived particles finding and event selection.
For the most time-consuming part of the reconstruction pro-

cedure the Cellular Automaton track finder is used. The effi-
ciency of the algorithm proved to be stable with respect to the

Fig. 8. Zoomed-in part of Fig. 7: black reconstructed track groups are well
resolved on the blue background of overlapped initial hits.

trackmultiplicity up to the extreme case of reconstruction of 100
minimum bias events at once without use of time information.
The reconstruction time dependence on the track multiplicity in
these conditions behaves as a second order polynomial, leaving
a room for further improvement after adding time information
into the track finding routine.
The CA track finder is both vectorized and parallelized. The

algorithm shows strong scalability on many-core systems. The
speed-up factor of 10.6 was achieved on a CPUwith 10 physical
cores using hyper-threading.
The event-based CA track finder was adapted for the time-

slice-based reconstruction, which is a requirement in the CBM
experiment for the event building. The 4D CA track finder al-
lows to resolve hits from different events overlapping in time
into event-corresponding clusters of tracks. The FLES package
is ready for the 4D reconstruction of time-slices in the CBM ex-
periment.
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